INDUSTRIAL RF HEATING

130 kW

- Output power: 130 kW in CW mode
- Anode voltage: 14 kV
- Anode dissipation: 50 kW
- Frequency up to 100 MHz

ITK 30-2

The ITK 30-2 is a RF power triode designed specifically for industrial applications.

This tube uses a coaxial design and metal-ceramic technology. This triode may be operated in CW or pulse modes.

For operation in pulse mode, the parameters depend on each equipment characteristics. Contact us for specific information. The ITK 30-2 is a water cooled triode.

This product is designed, developed and manufactured at an ISO 9001 registered production site.

Electrical characteristics

Filament	thoriated tungsten		
Filament voltage (+ 5 %, - 10 %) (1)	11	V	
Filament current	240	А	
Surge current	900	А	max.
Cold resistance	5	mΩ	
Capacitances:			
• grid-anode	49	рF	
• grid-cathode	98	рF	
cathode-anode (2)	2.5	рF	
Amplification factor	23		approx.
Transconductance (Va: 3 kV, Ia: 6 A)	95	mA/V	approx.
	50	1117 V V	upprox.

Mechanical characteristics

Operating position	vertical, anode up or down		
Weight	10.3	kg	approx.
Dimensions	see outline drawing		

Maximum ratings

Frequency (3)	100	MHz
Anode voltage:		
• up to 30 MHz	14	kV
• from 30 to 70 MHz	12	kV
• from 70 to 100 MHz	10	kV
Control grid voltage	- 1 500	V
Anode current, CW	16	A
Control grid current:		
• at full load, CW	3	А
• at no load, CW	5	А
Peak cathode current, CW	90	А
Anode dissipation:		
industrial cooling water	40	kW
distilled or deionized water	50	kW
Grid dissipation:		
• up to 30 MHz	1.2	kW
• from 30 to 70 MHz	1.05	kW
• from 70 to 120 MHz	0.9	kW
Grid resistance (tube non conducting)	10	KΩ

(1) At frequencies above 50 MHz, the filament voltage is reduced so that the ratio of filament voltage to current becomes the same as that without an anode voltage.
(2) Measured with a 40 x 40 cm shielding plate attached to the grid plate.
(3) Limited conditions above 30 MHz. Please consult Thales Electron Devices.

ITK 30-2

Cooling

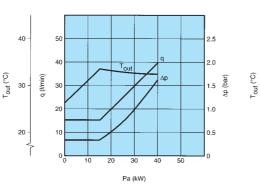
Anode cooling	water		
Cooling water flow and pressure gradient	see cooling curves		
Temperature at outlet (industrial water)	60	°C	max.
Cooling water inlet pressure	5	bar	max.
Temperature at any point on tube envelope	220	°C	max.
Air flow on filament head	0.5	m³/mi	n.

Typical operation (4)

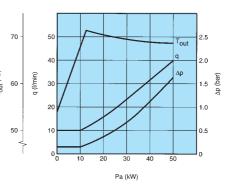
(4) Operation with higher frequencies on request.

Cooling curves

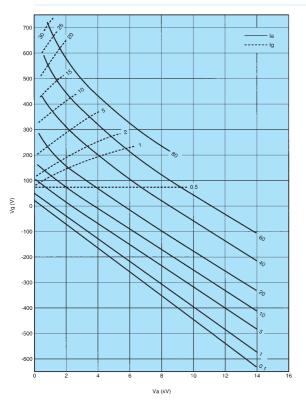
Distilled, deionized or tap water may be used for cooling. The water flow rate and pressure drop required for a particular anode dissipation are indicated on the cooling curves. Pa: anode dissipation Δp: pressure drop across

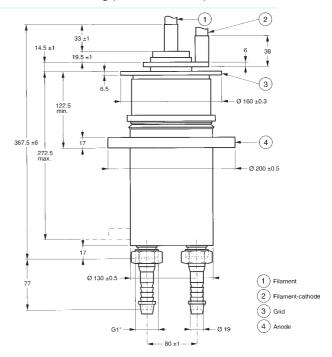

the water cooler

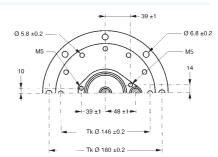
q: water flow rate


 $T_{\text{out}}:$ outlet water temperature

(for an inlet water temperature of 20°C with industrial water and 50°C with distilled or deionized water).


Industrial water minimum resistivity: 5 kΩ.cm


Distilled or deionized water - minimum resistivity: 50 kΩ.cm



Constant current characteristics

Outline drawing (dimensions in mm)

Top view (dimensions in mm)

This document cannot be considered to be a contractual specification. The information given herein may be modified without notice due to product improvement or further development. Consult Thales Electron Devices before making use of this information for equipment design.

For further information, please contact:

THALES ELECTRON DEVICES

2 bis, rue Latécoère - 78941 Vélizy Cedex - France Tel: + 33 1 30 70 35 00 - Fax: + 33 1 30 70 35 35 www.thalesgroup.com/electrondevices P.399/ 99.12 - Photos : Thales Electron Devices